Bibliography

[CGH97]

E. Castillo, J.M. Gutierrez, and A.S. Hadi. Expert Systems and Probabilistic Network Models. Springer, 1997.

[Cow98]

R.G. Cowell. Advanced inference in bayesian networks. In M.I. Jordan, editor, Learning in Graphical Models. A Bradford Book, 1998.

[GDH22]

H. Geffner, R. Dechter, and J.Y. Halpern, editors. Probabilistic and Causal Inference. ACM, 2022.

[Hen88]

M. Henrion. Propagating uncertainty in bayesian networks by probabilistic logic sampling. Uncertainty in Artificial Intelligence, 1988.

[HD99]

C. Huang and A. Darwiche. Inference in belief networks: a procedural guide. International Journal of Approximate Reasoning, 1999.

[IC02]

J.S. Ide and F.G. Cozman. Random generation of bayesian network. Advances in Artificial Intelligence, 2002.

[Kol09]

D. Koller. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.

[Mur12]

K.P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[Pea88]

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988.

[Pea00]

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2000.

[Pea18]

J. Pearl. The Book of Why: The New Science of Cause and Effect. Basic Books, 2018.

[PGJ16]

J. Pearl, M. Glymour, and N.P. Jewell. Causal Inference in Statistics, A Primer. Wiley, 2016.